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Abstract
In this paper, we study the exotic Landau problem at the classical level where two conserved quantities
are derived. At the quantum level, the corresponding quantumoperators of the conserved quantities
provide two oscillator representations fromwhichwe derive twoBoson Fock spaces. Using the
normalized coherent states which are theminimumuncertainty states on noncommutative
configuration space isomorphic to each of the boson Fock space, we form entangled coherent states
which are Bell- like states labeled quasi-Bell states. The effect of non-maximality of a quasi-Bell state
based quantumchannel is investigated in the context of a teleportation of a qubit.

1. Introduction

Wehave recently been interested in the study of a systemof an electronmoving on a plane in uniform external
magnetic and electricfields wherewe constructed different classes of coherent states in the context of discrete
and continuous spectra, and the situationwhere both spectra are purely discrete [1, 2]. Following theseworks,
we investigated the action of unitarymaps on the associated quantumHamiltonians and constructed the
coherent states of theGazeau-Klauder type [3]. The idea of the construction of these coherent states follows from
themethod ofGazeau-Klauder coherent states [4]. It is amethod for constructing a real two- parameter set of
coherent states {|J, γ〉}, J� 0, and –∞< γ<+∞ associated to physicalHamiltoniansHwhich have discrete
non-degenerate spectra. The states have to satisfy the following properties:

1. Continuity: themapping (J, γ)→ |J, γ〉 is continuous in some appropriate topology.

2. Resolution of unity : I= ∫|J, γ〉〈J, γ|dμ(J, γ).

3. Temporal stability: e J J wt w, , , constantiHt∣ ∣g gñ = + ñ =- .

4. Action identity: 〉J, γ|H|J, γ〉= wJ.

The construction of those states works ifH has no degenerate eigenstates and, furthermore, if the lowest
eigenvalue is exactly zero. Letʼs consider aHamiltonianHwith a discrete spectrumwhich is bounded below and
adjusted so thatH� 0, we assume in addition that the eigenstates are non-degenerate. The eigenstates |n〉 are
orthonormal vectors satisfyingH|n〉= En|n〉, n� 0, 0= E0< E1< E2<K, wherewe set the eigenvalues
En= wòn(= ÿwòn),w> 0 andfixed, with 0= ò0< ò1< ò2<K being a sequence of dimensionless real numbers.
TheGazeau-Klauder coherent states are defined as follows
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where J� 0 and g Î . The numbers ρn are positive and arefixed by the requirement of the action identity to be
ρn= ρ1ρ2Kρn. The normalization factorN(J), which turns out to be only dependent on J, is chosen so that
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The domain of allowed J, 0� J< R, is determined by the radius of convergenceR in the series definingN(J).
Some direct applications of thismethod that we are aware can be found in the literature [5–7].

In this paper, we consider themotion of charged particles in aflat noncommutative plane xy, with a constant
magnetic field applied along the z-axis, referring to the exotic Landau problem [8–12]. Two commuting
conserved quantities are derived from the study of the exoticmodel at the classical level in the situation of a pure
magnetic case. Through canonical quantization, the classical quantities are promoted to operators labeled by
‘hats’ and the Poisson brackets are replaced by (i/ÿ)multiplied by the commutators. Using two conserved
quantities operators, two oscillator representations allow to have an explicit formof thewave functions of the
quantumHilbert space.

The two oscillators systems generated by the two conserved quantities are labeled ‘systemA’ and ‘systemB’.
For each of the systems, we determine theminimumuncertainty coherent states on noncommutative
configuration space isomorphic to the boson Fock space. Using these coherent states we form entangled
coherent states bymean of the canonically transformed vector annihilation operator fromwhichwe form the
quasi-Bell states which are Bell type entangled non-orthogonal states.

An important application of quantum entanglement, in correlationwith quantum information processing,
is termed as quantum teleportation. The original idea of teleportation, introduced by Bennet et al [13], is
implemented through a channel involving a pair of particles in a Bell state shared by a sender and a receiver and
at the end of the protocol an unknown input state is reconstructedwith perfect fidelity at another locationwhile
destroying the original copy. A large number of quantum communication schemes can be viewed as variants of
teleportation, for example quantum secret sharing [14], quantum cryp-tography based on entanglement
swapping [15], andmore information can be found in the book byNielsen andChuang [16].

Usually, standard entangled states, which are inseparable states of orthogonal states, are used to implement
these teleportation based schemes.However, entangled non-orthogonal states do exist and theymay be used to
implement some of these teleportation-based protocols [17]. UsingHorodecki criterion, it is shown that the
teleportation scheme obtained by replacing the quantum channel (Bell state) of the usual teleportation scheme
by a quasi-Bell state is optimal [18].

Similar approach exist in the literature. For instance, Sisodia et al [19]published a comparative study on a
teleportation of a qubit using entangled non-orthogonal states, where the effect of non-orthogonality of an
entangled non-orthogonal state based quantum channel is investigated in detail in the context of the
teleportation of a qubit. They obtained the average fidelity,minimum fidelity andminimumassured fidelity
(MASFI) for the teleportation of a single qubit state using all the Bell type entangled non-orthogonal states
known as quasi Bell states. In a decade ago, Adhikari et al [17] published on quantum teleportation using non-
orthogonal entangled channels. In their study, the standard teleportation protocol to the case of such states has
been extended. They investigated how the loss of teleportation fidelity resulting for the use of non-orthogonal
states compares to a similar loss offidelity when noisy or non-maximally entangled states as used as teleportation
resource. Their analysis leads to certain interesting results on the teleportation efficiency of both pure andmixed
non-orthgonal states compared to that of non-maximally entangled andmixed states. Recent papers in the
literature confirm the need of investigation in fidelity of teleportation [20–22].

In the present workwe perform a teleportation of a qubit using one of the quasi-Bell states constructed as a
channel, and determine theminimumassured fidelity (MASFI) by this channel followed by the computation of
thefidelity of sending a qubit.We discuss the effect of the quasi-Bell state based quantum channel. The paper is
organized as follows. Section 2 is about the exotic Landau problempresented at the classical level as well as at the
quantum level. In section 3, quasi-Bell states are presented. The section 4 is dedicated to the teleportation of a
qubit and thefidelity of teleportation. Some concluding remarks are given in section 5.

2. The exotic Landau problem

2.1. Themodel at the classical level
Weconsider the two-dimensional noncommutative planewhere the fundamental commutation relations are
given by

x x x p p p, ; , ; , 0, 3i j
ij

i j
ij

i j{ } { } { } ( )qe d= = =

with ε ij are the components of the antisymmetric tensor normalized by ε12= 1, δij is the Kroenecker delta and θ
is the noncommutative parameter. The associated Poisson bracket on phase space differ from the canonical one
by an additional term as follows

2

J. Phys. Commun. 8 (2024) 095001 I Aremua and LGouba



⎜ ⎟
⎛
⎝

⎞
⎠

f g
f

x

g

p

g

x

f

p

f

x

g

x

g

x

f

x
, . 4

1 2 1 2

{ } · ( )    q=
¶
¶

¶
¶

-
¶
¶

¶
¶

+
¶
¶

¶
¶

-
¶
¶

¶
¶

For a systemof one charged particle ofmassM and charge emoving in this plane, we choose the
noncommutative parameter θ to be exotic in the sense that we relate it to the ‘exotic’ parameterκ as follows

M
, 5

2
( )q

k
=

and the systemof this exotic particle is described by theHamiltonian
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whereV is the electric potential, assumed to be time independent.
In the presence of an electromagnetic field, where the electricfield E


and themagnetic field B


are assumed

constant, theHamiltonian remains the standard one in (6)while the Poisson bracket ismodified to
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The fundamental commutations relations (3) are now

* * *
x x

M

M
x p

M

M
p p

M

M
eB, , , , , , 8i j

ij
i j

ij
i j

ij{ } { } { } ( )qe d e= = =

where the noncommutative parameter θ and the charge e combinewith themagnetic fieldB into an effective
mass given byM* =M(1− eθB). The vector potential is chosen as A B xi ij j

1

2
=  and the electric field Ei=−∂iV.

The equations ofmotion are obtained through the relations H ,{ }c c= , withχ ä (x1, x2, p1, p2) , i= 1, 2

*M x p Me E p eB x eE i j, , , 1, 2. 9i i
ij j

i
ij

j
i ( )  qe e= - = + =

Letʼs consider the situation of a puremagnetic case,meansE= 0. Then, the particle performs the usual
cyclotronicmotion butwithmodified frequency *

e B1
w = w

q-
, that is

*x t R t 10i i i( ) ( ) ( )w a b= - +

where ,1 2( )a a a= and ,1 2( )

b b b= are constant vectors.

The time-dependent translation or ‘boost’

*x x b p p M b; 11i i i i i i ( ) +  +

is a symmetry for the equation (9)whenever b b b,1 2( )

= satisfies

*M b eB b 0, 12i
ij

j
̈ ( )e- =

and the equation (12) is solved as

*b t R t a c , 13i i i( ) ( ) ( )w= - +

where a a a,1 2( )
= and c c c,1 2( )

= are constant vectors. The associated conserved quantities are therefore

* * * * * *M x x
M

M
R t p

M

M
R t x i; , 1, 2, 14i i

ij
j i i i

2

( ) ( ) ( ) ( ) w e w w= - = = = 

which follows the following algebra

* * * *M e B M, ; , 1 ; , 0. 15i j
ij

i j
ij

i j{ } { } ( ) { } ( )w e q w e= - = - =     

Thismodel has beenwidely studied in the literature [8–12].

2.2.Model at the quantum level
At the quantum level, the classical quantities are promoted to operators labeledwith ‘hats’ and the Poisson
brackets are replaced by commutatorsmultiplied by the factor iÿ. Due to the noncommutative parameter, the
position representation cannot be performed here.

Still in the conditionwhere E= 0, eBθ≠ 1, the quantumHamiltonian

H
p

M
i

2
, 1, 2, 16

i

i

1

2 2

ˆ ˆ ( )å= =
=

depends only on the conserved quantities i, 1, 2i
ˆ = which satisfies the following commutations relations

* *i e B M, 1 . 17i j
ij[ ˆ ˆ ] ( ) ( )q w e= -  
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Wedefine then the operators a, a† such that

a i a i a a eB M, , , 2 1 . 181 2 1 2ˆ ˆ ˆ ˆ ˆ ˆ [ ˆ ˆ ] ( ) ( )† † q w= + = - = -    

The quantumHamiltonian becomes (16) becomes

*
H

M eB
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2 1 2
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2
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q
w

=
-

+


whereω* = eB/M*,M* = (1− eBθ)M. It is convenient to define the creation and annihilation operators a a,{ }†

as follows

a a
eB M

a
eB M

a
1

2 1

1

2 1
20

( )
ˆ

( )
ˆ ( )† †

q w q w
=

-
=

- 

that satisfy the Fock algebra a a ,[ ]† = . The noncommutative configuration space in this sector is then
isomorphic to the boson Fock space
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Letʼs consider now the oscillator representation of the other conserved quantity, i, 1, 2i = , which are
‘x i, 1, 2iˆ = -only operators’, as follows

b i b i b b M, , , 2 . 221 2 1 2
ˆ ˆ ˆ ˆ ˆ ˆ [ ˆ ˆ ] ( )† † w= + = - =    

In the samemanner as above, it is convenient to introduce the operators b b,{ }†

b b
M

b
M

b
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,
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that satisfy the Fock algebra b b ,[ ]† = . The noncommutative configuration in this sector is then isomorphic to
the boson Fock space
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Letʼs consider now the boson Fock space of the system as G = G Ä G  such that
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The energy only depends on the i, 1, 2i = -dynamics as the second-oscillator operators have no
contribution. The energy levels are then

⎛
⎝

⎞
⎠

*E n
1

2
. 26n ( )w= +

Thewave function of the quantumHilbert space are given by |Ψ〉= |n,m〉.

3.Quasi-Bell states

Theminimal uncertainty states on noncommutative configuration space, which is isomorphic to the boson
Fock space G are well-known to be the normalized coherent states

ae e 0 , 272∣ ∣ ( )¯ †añ = ñaa a-


whereα is a dimensionless complex number. These states provide an overcomplete basis on the
noncommutative configuration space. In the same spirit, theminimal uncertainty states on noncommutative
configuration space, which is isomorphic to the boson Fock space G arewell-known to be the normalized
coherent states

be e 0 , 282∣ ∣ ( )¯ †bñ = ñbb b-


whereβ is a dimensionless complex number.
One can notice that the state |α〉 in equation (27) depend implicitly on the noncommutative parameter θ

while it is not the case for the states |β〉 in the equation (28), and that 〈α|β〉= 0.
We consider now two coherent states {|α〉, |− α〉} of thefirst oscillator systemA,which satisfy

exp 2 2∣ { ∣ ∣ }a a aá - ñ = - meaning their non-orthogonality. In the same spirit, we consider two coherent states
{|β〉, |− β〉} of the second oscillator systemB,which satisfy exp 2 .2∣ { ∣ ∣ }b b bá - ñ = -
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Let us now construct the following normalized states
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The states |Ψi〉α,β, i= 1, 2, 3, 4 are not orthogonal to each other and this is justify by their Grammatrix

G i j, 1 4, 1 4, 33ij i j, ,∣ ∣ ∣ ( )= áY Y ñ = ¼ = ¼a b a b
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. In order to determinewhether these non-

orthogonal states are entangled or not, we study here the entropy of entanglement as described in [23]. Letʼs
denote by i, 1, 4i

,r = ¼a b , the density operators of these states as follows

. 35i
i i, , ,∣ ∣ ( )( )r = Yñ áYa b a b a b

The reduced density operators are 1 3( ) ( )r r=a a and 2 4( ) ( )r r=a a , with
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The eigenvalues of the density operators 1( )ra or 3( )ra are the following
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Hence the entropy of entanglement is

E E log log , 401 , 3 , 1 1 1 1(∣ ) ( ) ( )l l l lY ñ = Y ñ = - - ¢ ¢a b a b

and

E E log log . 412 , 4 , 2 2 2 2(∣ ) ( ) ( )l l l lY ñ = Y ñ = - - ¢ ¢a b a b

These states in (29), (30), (31), (32) are entangled, and in the limits |α|→+∞ and |β|→+∞ , they are
maximally entangled states. These entangled coherent states are quasi-Bell states and the dimension of the space
spanned by these states is 4 even though they are embedded in a vector space of infinite dimension.

4.Quantum teleportation of a qubit

In this section, we formulate the teleportation protocole between two friends Amy andBella as described in
[13, 24, 25].We assume that Amy andBella are far away and sharing the quantum channel
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Letʼs set the following orthonormal basis of systemAby superposing nonorthogonal and linear independent
two coherent states |α〉 and |− α〉

e
1

cos 2
cos sin , 431∣ ( ∣ ∣ ) ( )

q
q a q añ = ñ - - ñ

e
1

cos 2
sin cos , 442∣ ( ∣ ∣ ) ( )

q
q a q añ = - ñ + - ñ

with esin 2 2 2∣ ∣ ∣q a a= á- ñ = a- and 〈ei|ej〉= δij, i= 1, 2, and j= 1, 2. In the samemanner, an orthonormal
basis of systemB can be set by superposing nonorthogonal and linear independent two coherent states |β〉 and
|− β〉 as follows

f
1
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q
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with esin 2 2 2∣ ∣ ∣q b a¢ = á- ñ = b- and 〈fk|fl〉= δkl, k= 1, 2, and l= 1, 2. In termof orthonormal basis, we have

e ecos sin , 471 2∣ ∣ ∣ ( )a q qñ = ñ + ñ

e esin cos , 481 2∣ ∣ ∣ ( )a q q- ñ = ñ + ñ
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f fcos sin , 491 2∣ ∣ ∣ ( )b q qñ = ¢ ñ + ¢ ñ

f fsin cos . 501 2∣ ∣ ∣ ( )b q q- ñ = ¢ ñ + ¢ ñ

With respect to the equations (43) and (44), (45), (46), the quantum channel shared byAmy andBellaΨα,β in
equation (42) takes the form

e f

e f e f e f

1

2 1 sin 2 sin 2
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sin sin cos . 51

e f, 1 1

1 2 2 1 2 2

∣
( )

( ( )∣ ∣

( )∣ ∣ ( )∣ ∣ ( )∣ ∣ ) ( )
q q

q q

q q q q q q

Yñ º
+ ¢

- ¢ ñ ñ

+ + ¢ ñ ñ + + ¢ ñ ñ + - ¢ ñ ñ

Amywants to send to Bella the state

e ecos sin 52a a a1 2∣ ∣ ∣ ( )y q qñ = ñ + ñ

through the channel (51). Amy has now two qubits, the one subscribed ‘a’which shewants to teleport and one of
the entangled pair labeled ‘e’ , and Bella has one particle labeled ‘f’.

The state of the three particles before Amyʼsmeasurement is given by

e e

e f e f e f

e f

cos sin
1

2 1 sin 2 sin 2

cos sin sin

cos . 53

aef a ef a a1 2

1 1 1 2 2 1

2 2

∣ ∣ ∣ [( ∣ ∣ ]
( )

[( ( )∣ ∣ ( )∣ ∣ ( )∣ ∣
( )∣ ∣ )] ( )

y q q
q q

q q q q q q
q q

Yñ = ñ Ä Yñ = ñ + ñ Ä
+ ¢

´ - ¢ ñ ñ + + ¢ ñ ñ+ + ¢ ñ ñ

+ - ¢ ñ ñ

In the equation (53), each direct product |e1〉a|ei〉, i= 1, 2 can be expressed in terms of the quasi-Bell operators
basis vectors. In analogywith the four Bell states |Φ+〉, |Φ−〉, |Ψ+〉, |Ψ−〉, we follow the general identities applied
to the qubits subscribedwith ‘a’ and labeledwith ‘e’ as follows

e e e e
1

2
, 54ae a a1 1 2 2∣ (∣ ∣ ∣ ∣ ) ( )F ñ = ñ ñ + ñ ñ+

e e e e
1

2
, 55ae a a1 1 2 2∣ (∣ ∣ ∣ ∣ ) ( )F ñ = ñ ñ - ñ ñ-

e e e e
1

2
, 56ae a a1 2 2 1∣ (∣ ∣ ∣ ∣ ) ( )Y ñ = ñ ñ + ñ ñ+

e e e e
1

2
. 57ae a a1 2 2 1∣ (∣ ∣ ∣ ∣ ) ( )Y ñ = ñ ñ - ñ ñ+

Then

e e
1

2
, 58a ae ae1 1∣ ∣ (∣ ∣ ) ( )ñ ñ = F ñ + F ñ+ -
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e e
1

2
, 59a ae ae1 2∣ ∣ (∣ ∣ ) ( )ñ ñ = Y ñ + Y ñ+ -

e e
1

2
, 60a ea ea2 1∣ ∣ (∣ ∣ ) ( )ñ ñ = Y ñ - Y ñ+ -

e e
1

2
. 61a ea ea2 2∣ ∣ (∣ ∣ ) ( )ñ ñ = F ñ - F ñ+ -

Applying the identities (58), (59), (60), (61), and expanding, the equation (53) becomes:

f

f

f

f

f

f

f

f

1

2 1 sin 2 sin 2

cos cos sin sin

sin cos cos sin

cos cos sin sin

cos sin sin cos

cos sin sin cos

cos cos sin sin

cos sin sin cos

cos cos sin sin . 62

aef

ae

ae

ae

ae

1

2

1

2

1

2

1

2

∣ {

∣ [( ( ) ( ))∣
( ( ) ( ))∣ ]
∣ [( ( ) ( ))∣
( ( ) ( ))∣ ]
∣ [( ( ) ( ))∣
( ( ) ( ))∣ )]
∣ [( ( ) ( ))∣
( ( ) ( ))∣ )]} ( )

q q
q q q q q q

q q q q q q
q q q q q q

q q q q q q
q q q q q q

q q q q q q
q q q q q q

q q q q q q

Yñ =
+ ¢

´ F ñ Ä - ¢ + + ¢ ñ

+ - ¢ + + ¢ ñ

+ F ñ Ä - ¢ - + ¢ ñ

+ + ¢ - - ¢ ñ

+ Y ñ Ä + ¢ + - ¢ ñ

+ - ¢ + + ¢ ñ

+ Y ñ Ä + ¢ - - ¢ ñ

+ - ¢ - + ¢ ñ

+

-

+

-

Since no operations have been performed, the three qubits are still in the same total state. The teleportation
occurs whenAmymeasures her two qubits (a and e) in the quasi-Bell basis |Φ+〉ae, |Φ

−〉ae, |Ψ
+〉ae, |Ψ

−〉ae. Amyʼs
two qubits are now entangled to each other in one of the four quasi-Bell states and the entanglement originally
shared betweenAmyʼs and Bellaʼs qubits is nowbroken. Since the states |ψ〉a and |ψ〉e arewithAmy, she
performs a quasi Bell statemeasurement on her states and send themeasurement result to Bella expending two
classical bits. The result of Amyʼsmeasurement tells her which of the four following states the system is in

f fcos cos sin sin sin cos cos sin , 63ae 1 2∣ [( ( ) ( ))∣ ( ( ) ( ))∣ ] ( )q q q q q q q q q q q qF ñ Ä - ¢ + + ¢ ñ + - ¢ + + ¢ ñ+

f fcos cos sin sin cos sin sin cos , 64ae 1 2∣ [( ( ) ( ))∣ ( ( ) ( ))∣ ] ( )q q q q q q q q q q q qF ñ Ä - ¢ - + ¢ ñ + + ¢ - - ¢ ñ-

f fcos sin sin cos cos cos sin sin , 65ae 1 2∣ [( ( ) ( ))∣ ( ( ) ( ))∣ )] ( )q q q q q q q q q q q qY ñ Ä + ¢ + - ¢ ñ + - ¢ + + ¢ ñ+

f fcos sin sin cos cos cos sin sin . 66ae 1 2∣ [( ( ) ( ))∣ ( ( ) ( ))∣ )] ( )q q q q q q q q q q q qY ñ Ä + ¢ - - ¢ ñ + - ¢ - + ¢ ñ-

Bellaʼs qubits takes on one of the four superposition states above and they are unitary images of the state to be
teleported. After Bella receive themessage fromAmy, she guesses which of the four states her qubit is in. Using
this information, Bella accordingly chooses one of the unitary transformation  i, , ,x y z{ }s s s to performher
part of the channel. Here  represents the identity operator, andσx,σy,σz are the Pauli operators, and the
correspondence between themeasurement outcomes and the unitary operations are

 i; ; ; . 67ae ae z ae x ae y∣ ∣ ∣ ∣ ( )s s sF ñ  F ñ  Y ñ  Y ñ + - + -

The teleportation is achieved, and in order tomeasure the efficiency of the teleportation protocol, we compute
thefidelity of this teleportation as discussed in [24–26]. The teleportationfidelity is given by

F P , 68
i

i a i
tel

1

4
2∣ ∣ ∣ ( )å y c= á ñ

=

where P MTri aef i aef( ∣ ∣ )= áY Yñ ,Mi= |ψi〉〈ψi| themeasurement operator in the quasi-Bell basis |ψi〉 ä {|Φ+〉ae,
|Φ−〉ae, |Ψ

+〉ae, |Ψ
−〉ae}, and |χ〉i is the teleported state corresponding to the ith projectivemeasurement in the

quasi-Bell basis to the teleported state, that is nothing than Bellaʼs normalized and corrected outcome given the
measurement result i. Letʼs computefirstPi, i= 1,K4

P Tr , 69aef ae aef1 ( ∣ ∣ ) ( )= áY F ñ áF Yñ+ +

P Tr , 70aef ae aef2 ( ∣ ∣ ) ( )= áY F ñ áF Yñ- -

P Tr , 71aef ae aef3 ( ∣ ∣ ) ( )= áY Y ñ áY Yñ+ +

P Tr , 72aef ae aef4 ( ∣ ∣ ) ( )= áY Y ñ áY Yñ- -

⎜ ⎟⎛
⎝

⎞
⎠

P P
1

4

1

4

sin 2 sin 2 sin 2

1 sin 2 sin 2
, 731 3

2( ) ( )q q q
q q

= = +
+ ¢

+ ¢
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⎜ ⎟⎛
⎝

⎞
⎠

P P
1

4

1

4

sin 2 sin 2 sin 2

1 sin 2 sin 2
. 742 4

2( ) ( )q q q
q q

= = -
+ ¢

+ ¢

Thefidelity of transportation the state |ψ〉a given the channel |Ψ〉ef in equation (42)is given by

F
cos sin 2 sin

1 sin 2 sin 2
. 75Tel

2 2 2( ) ( ) ( ) ( )q q q q q
q q

=
- ¢ + + ¢

+ ¢

If q q= ¢, we have

F
1 sin 2

1 sin 2
. 76Tel

4

2

( ) ( )q
q

=
+
+

Wedetermine theminimumassuredfidelity (MASFI)which corresponds to the least value of possiblefidelity for
a given information and can be used asmeasure of quality of teleportation [27, 28]. The concurrence of the state
channel is

C
cos 2 cos 2

1 sin 2 sin 2
. 77ef(∣ ) ( )q q

q q
Yñ =

¢
+ ¢

More details on how to compute the concurrence of an entangled state can be found in [23]. Theminimum
assured fidelity (MASFI) is defined as

C

C
MASFI

2

1

2 cos 2 cos 2

1 sin 2 sin 2 cos 2 cos 2
. 78

ef

ef
ef( )

(∣ )
(∣ )

( )∣
q q

q q q q
=

Yñ

+ Yñ
=

¢
+ ¢ + ¢

Yñ

If q q= ¢, then

MASFI cos 2 . 792
ef( ) ( )∣ q=Yñ

Letʼs recall that sin 2 exp 2 2( ) ( ∣ ∣ )q a= - and sin 2 exp 2 2( ) ( ∣ ∣ )b b= - . Aswe have already noticed, when |
α|→∞ and |β|→∞ , the quasi-Bell states as defined in equations (29), (30), (31), (32) aremaximal and this is
justified here by the fact that when |α|→∞ , |β|→∞ , then sin 2 0( )q  and sin 2 0( )q¢  , thatmeans that
θ→ (π/2) and 2( )q p¢  . For 2( )q q p= ¢ = , thefidelity in the equation (75) is 1 and theMASFI in
equation (78) is 1.

5. Concluding remarks

In this work, quasi-Bell states have been established using non-orthogonal states. These quasi-Bell states are
non-orthogonal and non-maximally. The discussion about teleportation via one of these quasi-Bell states has
beenmotivated by theHorodecki criterionwhich has shown that the teleportation scheme obtained by replacing
the quantum channel (Bell state) of the usual teleportation schemewith a quasi-Bell state is optimal. Indeed, in a
recent work on a comparative study of teleportation of a qubit using entangled non-orthogonal states, it has
been established that all the quasi-Bell states, which are entangled non-orthogonal states,may be used for
quantum teleportation of a single qubit state [19].

For the quantum channel used in the present work, the performance of the teleportation are given by the
fidelity FTel and theminimumassured fidelity (MASFI), which values reach unit when |α|, |β|→∞ . This
condition cannot be reached since the states are non-orthogonal by construction. Then, we cannot have a
situation ofmaximally entangled non-orthogonal states as the cases studied in [19]. At 2( )q q p= ¢ = , the
minimumassured fidelity (MASFI=1), and the concurrence aswell as the fidelity take the value unit, but this is
in contradictionwith the fact that sin 2 exp 2 2( ) ( ∣ ∣ )q a= - due to the non-orthogonality of the coherent states.
In conclusion, deterministic perfect teleportation is not possible in the case of our study, and the reason is due to
the non-maximallity of the states which cannot be reachedwithout violating the non-orthogonality of the states.
We hope the present studywill be useful for the investigations of entangled non-orthogonal coherent states as
channels for teleporting qubits.
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