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Abstract

In this paper, we study the exotic Landau problem at the classical level where two conserved quantities
are derived. At the quantum level, the corresponding quantum operators of the conserved quantities
provide two oscillator representations from which we derive two Boson Fock spaces. Using the
normalized coherent states which are the minimum uncertainty states on noncommutative
configuration space isomorphic to each of the boson Fock space, we form entangled coherent states
which are Bell- like states labeled quasi-Bell states. The effect of non-maximality of a quasi-Bell state
based quantum channel is investigated in the context of a teleportation of a qubit.

1. Introduction

We have recently been interested in the study of a system of an electron moving on a plane in uniform external
magnetic and electric fields where we constructed different classes of coherent states in the context of discrete
and continuous spectra, and the situation where both spectra are purely discrete [1, 2]. Following these works,
we investigated the action of unitary maps on the associated quantum Hamiltonians and constructed the
coherent states of the Gazeau-Klauder type [3]. The idea of the construction of these coherent states follows from
the method of Gazeau-Klauder coherent states [4]. It is a method for constructing a real two- parameter set of
coherentstates {|/,7)},] > 0, and — 0o < v < + 00 associated to physical Hamiltonians H which have discrete
non-degenerate spectra. The states have to satisfy the following properties:

1. Continuity: the mapping (J,) — |, ) is continuous in some appropriate topology.

2. Resolution of unity: I = /|, 7)(J,7|dud, 7).
3. Temporal stability: e=#|J, v) = |J, v + wt), ~w = constant.
4. Action identity: )], v|H|J, ) = wJ.

The construction of those states works if H has no degenerate eigenstates and, furthermore, if the lowest
eigenvalue is exactly zero. Let’s consider a Hamiltonian H with a discrete spectrum which is bounded below and
adjusted so that H > 0, we assume in addition that the eigenstates are non-degenerate. The eigenstates |#) are
orthonormal vectors satisfying H|n) = E,|n),n > 0,0 = E; < E; < E, < ..., where we set the eigenvalues
E,, = we,(= hwe,,), w > 0 and fixed, with 0 = €5 < €; < ¢, < ... being a sequence of dimensionless real numbers.
The Gazeau-Klauder coherent states are defined as follows
X Tn/2,—ive,
1. 9) = Ny 2y L), M
k=0 Pu

whereJ > 0and v € R. The numbers p,, are positive and are fixed by the requirement of the action identity to be
Pn= P1P2---Pn- The normalization factor N(J), which turns out to be only dependent on J, is chosen so that
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The domain of allowed ], 0 < ] < R, is determined by the radius of convergence R in the series defining N(J).
Some direct applications of this method that we are aware can be found in the literature [5-7].

In this paper, we consider the motion of charged particles in a flat noncommutative plane xy, with a constant
magnetic field applied along the z-axis, referring to the exotic Landau problem [8—12]. Two commuting
conserved quantities are derived from the study of the exotic model at the classical level in the situation of a pure
magnetic case. Through canonical quantization, the classical quantities are promoted to operators labeled by
‘hats’ and the Poisson brackets are replaced by (i/h) multiplied by the commutators. Using two conserved
quantities operators, two oscillator representations allow to have an explicit form of the wave functions of the
quantum Hilbert space.

The two oscillators systems generated by the two conserved quantities are labeled ‘system A’ and ‘system B’.
For each of the systems, we determine the minimum uncertainty coherent states on noncommutative
configuration space isomorphic to the boson Fock space. Using these coherent states we form entangled
coherent states by mean of the canonically transformed vector annihilation operator from which we form the
quasi-Bell states which are Bell type entangled non-orthogonal states.

An important application of quantum entanglement, in correlation with quantum information processing,
is termed as quantum teleportation. The original idea of teleportation, introduced by Bennet etal [13], is
implemented through a channel involving a pair of particles in a Bell state shared by a sender and a receiver and
at the end of the protocol an unknown input state is reconstructed with perfect fidelity at another location while
destroying the original copy. A large number of quantum communication schemes can be viewed as variants of
teleportation, for example quantum secret sharing [14], quantum cryp-tography based on entanglement
swapping [15], and more information can be found in the book by Nielsen and Chuang [16].

Usually, standard entangled states, which are inseparable states of orthogonal states, are used to implement
these teleportation based schemes. However, entangled non-orthogonal states do exist and they may be used to
implement some of these teleportation-based protocols [17]. Using Horodecki criterion, it is shown that the
teleportation scheme obtained by replacing the quantum channel (Bell state) of the usual teleportation scheme
by a quasi-Bell state is optimal [18].

Similar approach exist in the literature. For instance, Sisodia et al[19] published a comparative study on a
teleportation of a qubit using entangled non-orthogonal states, where the effect of non-orthogonality of an
entangled non-orthogonal state based quantum channel is investigated in detail in the context of the
teleportation of a qubit. They obtained the average fidelity, minimum fidelity and minimum assured fidelity
(MASFI) for the teleportation of a single qubit state using all the Bell type entangled non-orthogonal states
known as quasi Bell states. In a decade ago, Adhikari et al[17] published on quantum teleportation using non-
orthogonal entangled channels. In their study, the standard teleportation protocol to the case of such states has
been extended. They investigated how the loss of teleportation fidelity resulting for the use of non-orthogonal
states compares to a similar loss of fidelity when noisy or non-maximally entangled states as used as teleportation
resource. Their analysis leads to certain interesting results on the teleportation efficiency of both pure and mixed
non-orthgonal states compared to that of non-maximally entangled and mixed states. Recent papers in the
literature confirm the need of investigation in fidelity of teleportation [20-22].

In the present work we perform a teleportation of a qubit using one of the quasi-Bell states constructed asa
channel, and determine the minimum assured fidelity (MASFI) by this channel followed by the computation of
the fidelity of sending a qubit. We discuss the effect of the quasi-Bell state based quantum channel. The paper is
organized as follows. Section 2 is about the exotic Landau problem presented at the classical level as well as at the
quantum level. In section 3, quasi-Bell states are presented. The section 4 is dedicated to the teleportation of a
qubit and the fidelity of teleportation. Some concluding remarks are given in section 5.

2. The exotic Landau problem

2.1. The model at the classical level
We consider the two-dimensional noncommutative plane where the fundamental commutation relations are
given by

{xi’ x]} = egij; {xi) P]} = 6ij; {Pi’ P]} =0, (3)

with 7 are the components of the antisymmetric tensor normalized by £'* = 1, 6;jis the Kroenecker delta and 0
is the noncommutative parameter. The associated Poisson bracket on phase space differ from the canonical one
by an additional term as follows
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o 0 0g 0 of o 0g 0
o= %8 080 40 9% Ogf) @
ox Op 0x Op 0x; 0%, Ox; 0%
For a system of one charged particle of mass M and charge e moving in this plane, we choose the
noncommutative parameter 6 to be exotic in the sense that we relate it to the ‘exotic’ parameter x as follows
K
0= W > (%)
and the system of this exotic particle is described by the Hamiltonian
1 ,
H=——3"p +eVlwxn), i=12 ©)

M

where Vis the electric potential, assumed to be time independent.
In the presence of an electromagnetic field, where the electric field E and the magnetic field B are assumed
constant, the Hamiltonian remains the standard one in (6) while the Poisson bracket is modified to

of 0 0g 0 of 0 og 0 of 0O dg 0
g =L 08 080F | ,f0f O 98 Of ) pfOf 05 08 OfF @)
ox Jp OX Op 0x; 0%  Ox; Ox op, 0p,  Op, Op,
The fundamental commutations relations (3) are now
{xir x]} = Weel]: {xi) P]} = W(SU: {Pp P]} = W@BEU, (8)

where the noncommutative parameter 6 and the charge e combine with the magnetic field B into an effective
mass given by M* = M(1 — efB). The vector potential is chosen as A; = %BEI']'X]' and the electric field E; = — 0;V.
The equations of motion are obtained through the relations x = {H, x}, with x € (x;, %5, p1,p2),i=1,2

M*%; = p, — Mefe'E/, p; = eBexj + eE', i,j=1,2. 9)
Let’s consider the situation of a pure magnetic case, means E = 0. Then, the particle performs the usual

cyclotronic motion but with modified frequency w* = N fee 5> thatis

xi(t) = R(—w*) o + G; (10)

where & = (¢, a;)and B = (B, 3,) are constant vectors.
The time-dependent translation or ‘boost’

xXi = xi+ b p— p o+ M, (11)
is a symmetry for the equation (9) whenever b= (b), b,)satisfies
M*b; — eBelib; = 0, (12)
and the equation (12) is solved as
bi(t) = R(—w*t)a; + ¢, (13)

where d = (a5, a;) and ¢ = (g, ¢) are constant vectors. The associated conserved quantities are therefore

P = M*(x; — w¥elx)); Ki= KR(w*t)pi = M*ZR(w*t)fc,', i=1,2, (14)
M M
which follows the following algebra
{P,‘, ’P]} = —M*W*Eij; {]Ci, ]C]} = (1 — eHB)M*w*sij; {P,‘, ]C]} = 0. (15)

This model has been widely studied in the literature [8—12].

2.2. Model at the quantum level
At the quantum level, the classical quantities are promoted to operators labeled with ¢ hats’ and the Poisson
brackets are replaced by commutators multiplied by the factor ifi. Due to the noncommutative parameter, the
position representation cannot be performed here.
Still in the condition where E = 0, eBf = 1, the quantum Hamiltonian
2 Api2

A=Y -4, i=1,2, (16)
2M

=
depends only on the conserved quantities Ki, i = 1, 2 which satisfies the following commutations relations

[Ki, Kl =ih(1 — efB)M*w*ei., (17)
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We define then the operators a, a’ such that

a =K+ iKs, at =K, — ik, [, a'] = 2h(1 — eBf)Muw. (18)
The quantum Hamiltonian becomes (16) becomes
1 huw*

A=—-
2M (1 — eB0)> 2

where w" = eB/M", M" = (1 — eBO)M. It is convenient to define the creation and annihilation operators {a, a'}
as follows

1 1
. A od = 5t (20)

a a
J2h(1 — eBA)Mw J2h(1 — eBA)Mw

that satisfy the Fock algebra [a, a'] = I. The noncommutative configuration space in this sector is then
isomorphic to the boson Fock space

Ik = span{ln) = ﬁ(a“)”l@;c} . (21)
: n=0

Let’s consider now the oscillator representation of the other conserved quantity, P;, i = 1, 2, which are
‘%;, i = 1, 2-only operators’, as follows

E = 751 + iﬁz, 51- = 751 - iﬁZ) [A, ET] = Zth (22)
In the same manner as above, it is convenient to introduce the operators { b, b'}
1 A . 1 ~
b= ——— b, b=, (23)

V2hMw 2hMw

that satisfy the Fock algebra [b, b'] = I. The noncommutative configuration in this sector is then isomorphic to
the boson Fock space

1
N
Let’s consider now the boson Fock space of the systemas I' = I'p ® Ic such that

1
m!n!

The energy only depends on the /C;, i = 1, 2-dynamics as the second-oscillator operators have no
contribution. The energy levels are then

Ip = span{|m> = (bT)'”|0>p} . (24)
m=0

I = span{lm) ® |n) = |m, n) = (6H™(a""|0, 0);@7;} . (25)
m,n=0

E, = ﬁw*(n + %) (26)

The wave function of the quantum Hilbert space are given by |¥) = |, m).

3. Quasi-Bell states

The minimal uncertainty states on noncommutative configuration space, which is isomorphic to the boson
Fock space I are well-known to be the normalized coherent states

|a> — e—a@/ZeauTl()»C’ (27)

where o is a dimensionless complex number. These states provide an overcomplete basis on the
noncommutative configuration space. In the same spirit, the minimal uncertainty states on noncommutative
configuration space, which is isomorphic to the boson Fock space I'p are well-known to be the normalized
coherent states

18) = e 5/2%™0)p, (28)

where (is a dimensionless complex number.

One can notice that the state |«) in equation (27) depend implicitly on the noncommutative parameter 0
while it is not the case for the states | 3) in the equation (28), and that {«|3) = 0.

We consider now two coherent states {|«), | — ) } of the first oscillator system A, which satisfy

(a|—a) = exp{—2|af’} meaning their non-orthogonality. In the same spirit, we consider two coherent states
{18),] — B)} of the second oscillator system B, which satisfy (8| — 3) = exp{—2|3]*}.

4
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Let us now construct the following normalized states

o = 612(|a|2+|ﬁ|2>) (la)1-8) + 1 — a)18), 29)
W = s —— el = ), (30)
W = 6—12(|a|2+|ﬁlz>) (1a)18) + | — a)|—6) (31)
W5 = 1 (1a)18) — | - a)—B)). (32)

J2(1 — e2aP+15P)
The states |U;),, 5 i = 1,2, 3, 4 are not orthogonal to each other and this is justify by their Gram matrix

Gij = lag (Wil ¥ )apli=1...4,j=1..4, (33)
which is

1 0 Gy 0
0 1 0 G

G = , 34
Gs1 0 1 0 (34)
0 Gy 0 1
. e2lal? 4 o218 e2lal _ 2182 .
with G, ;3 = G3; = and G4 = Gy = .In order to determine whether these non-

1 + e~20alP+18P) 1 — e—20alP+18P)

orthogonal states are entangled or not, we study here the entropy of entanglement as described in [23]. Let’s
denoteby p|, pi=1..4 the density operators of these states as follows

pg,)ﬁ = |\I/i>a,3a,ﬂ<\lli|- (35)
The reduced density operators are ps) = ps) and pg) - pff),with

M 1
p =
(1 + e MalHIory

X (1 + e 19%a) (o] 4+ 2e72a) (—al + 2¢7 2P| —a) (a] + A + e 4P| —a) (—al), (36)

P — 1
(1 — e~ Ual+18Py

x ((1 + e *19%]a) (a] — 2¢72a) (—a] — 2¢7 2| —a) (o] + (1 + e )| —a)(—a]).  (37)

The eigenvalues of the density operators ps) or pf ) are the following

(1 — 21012 , a4+ e~2101)2

A= 2(1 + e 2P0y T Q1 f ¢ 20aPTI5R)y (38)
and for p(az) or p(:), theyare
_ o218142 —2|81%\2
A= 2(1(1_ 662(|a|2+)|m2>)’ Ao’ = 2(1(1_tezua|2+)|ﬂ|2>)' (39)
Hence the entropy of entanglement is
E([W)q,5) = E(W3)a,3) = —Alog A — N/log A/, (40)
and
E(|¥2)a,) = E(Wy)a,) = —A2log Ay — Xy"log Ay (41)

These states in (29), (30), (31), (32) are entangled, and in the limits || — + 0o and | 3| — + oo , they are
maximally entangled states. These entangled coherent states are quasi-Bell states and the dimension of the space
spanned by these states is 4 even though they are embedded in a vector space of infinite dimension.

4. Quantum teleportation of a qubit

In this section, we formulate the teleportation protocole between two friends Amy and Bella as described in
[13,24,25]. We assume that Amy and Bella are far away and sharing the quantum channel

5
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1
21+ e2aP 1)

1W3)a, 5 (1) 18) + 1 = a)|=6)). (42)

Let’s set the following orthonormal basis of system A by superposing nonorthogonal and linear independent
two coherent states |«) and | — &)

120 (cosfla) — sinf|—a)), (43)

|ez> =

with sin 26 = (—ala) = e ?l*Mand (ejle;) = 6;,i = 1,2,andj = 1, 2. In the same manner, an orthonormal
basis of system B can be set by superposing nonorthogonal and linear independent two coherent states | 3) and
| — B) as follows

129(—sin9|0z> + cos | —a)), (44)

2|af?

1) = ——(cos#I8) — sin¢/|— ), (45)
cos 26

Ify) = ——=(—sin®|8) + cos0'|-3)), (46)
cos 20

with sin 20’ = (—fla) = e 2" and (f|f}) = 8 k = 1,2,and [ = 1, 2. In term of orthonormal basis, we have

|a) = cosfBle;) + sinfley), (47)
|—a) = sinfle;) + cosfley), (48)
and
|B) = cos@'|f,) + sin@'|f,), (49)
|—B) =sin’|f) + cos'|f,). (50)

With respect to the equations (43) and (44), (45), (46), the quantum channel shared by Amy and Bella ¥,, zin
equation (42) takes the form

1
U, r = 0_ 0o
e J2(1 + sin26 sin29’)(cos( ey 1)

+ sin(f + @")|en) | f;) + sin(@ + 0)ex) | f,) + cos(@ — 0")|ex) | f,)). (51)

Amy wants to send to Bella the state
[1)a = cosOler)s + sinbley), (52)

through the channel (51). Amy has now two qubits, the one subscribed ‘@’ which she wants to teleport and one of
the entangled pair labeled ‘¢’ , and Bella has one particle labeled ‘f.
The state of the three particles before Amy’s measurement is given by
1
&
\/2(1 + sin 26 sin 26")
X [(cos(@ — 0")|en) | f,) + sin(@ + 0")er) |f,)+sin(0 + 6")]ex) | f,)
+ cos(8 — 0)lex) |f)]- (53)
In the equation (53), each direct product |e; ) ,|e;), i = 1, 2 can be expressed in terms of the quasi-Bell operators

basis vectors. In analogy with the four Bell states |®*), |®7), [I), |[I~), we follow the general identities applied
to the qubits subscribed with ‘a’ and labeled with ‘e’ as follows

|\Ij>aef = |w>u & I\Ij>ef = [(COS 0|el>a + sin 9|62>a]

2% e %(|el>a|el> + leshules)), (54)

® )ue = %<|el>a|el> — lezlales)), (55)

0+ = %<|el>u|ez> + leshalen), (56)

0+ = %uelme» — Jes)alen). (57)
Then

lealer) = %a@me 197 o), (58)
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leales) = %qwae T )a)s (59)
lealer) = %uma — ), (60)
le2ales) = %q@% 10 ). (61)

Applying the identities (58), (59), (60), (61), and expanding, the equation (53) becomes:
1

241 + sin 26 sin 26’ {

X |®F)e ® [(cosfcos(d — ) + sinfsin(@ + 6")|f,)

+ (sin cos(f — 0") + cosOsin(0 + 0)|f,)]

+ [P )ee @ [(cosB cos(@ — 6') — sinfsin( + 0")|f)

+ (cos @ sin(0 + 0") — sinf cos(d — 0)|f,)]

+ U ® [(cosOsin(d + 0') + sinf cos(d — ') f)

+ (cos @ cos(0 — 0') + sinfsin(0 + 0)|f,)]

+ U ) ® [(cosfsin(d + 0") — sinf cos(d — 0")|f,)

+ (cos @ cos(d — §) — sinfsin(6 + 0")| L)1} (62)

|\I,>aef -

Since no operations have been performed, the three qubits are still in the same total state. The teleportation
occurs when Amy measures her two qubits (aand e) in the quasi-Bell basis |9 ) .0, [P ) e [T ) aer [U7 ) e Amy’s
two qubits are now entangled to each other in one of the four quasi-Bell states and the entanglement originally
shared between Amy’s and Bella’s qubits is now broken. Since the states 1), and |)). are with Amy, she
performs a quasi Bell state measurement on her states and send the measurement result to Bella expending two
classical bits. The result of Amy’s measurement tells her which of the four following states the system is in

|8+, ® [(cos cos(d — 0') + sin@sin(@ + 0")|f) + (sinf cos(d — 0') + cosOsin(@ + 0)|f,)], (63)
|07 ) @ [(cosBcos(d — 0"y — sin@sin(@ + 0)|f) + (cos@sin(@ + 0') — sin 6 cos(@ — 0)|f,)], (64)
W) @ [(cosOsin(@ + 0') + sind cos(@ — 0)|f;) + (cos cos( — 0") + sinOsin(@ + 0))|f,)], (65)
[0 Y @ [(cosfsin(d + 0') — sinf cos(d — 0")|f,) + (cosf cos(d — ') — sin@sin(@ + 0")|f,))]. (66)

Bella’s qubits takes on one of the four superposition states above and they are unitary images of the state to be
teleported. After Bella receive the message from Amy, she guesses which of the four states her qubit is in. Using
this information, Bella accordingly chooses one of the unitary transformation {I, oy, io,, 0,} to perform her
part of the channel. Here I represents the identity operator, and oy, 7,, 0 are the Pauli operators, and the
correspondence between the measurement outcomes and the unitary operations are

[P )ae = L5 [P )ae = 05 [¥T)ae = 035 [V )ae = 0y (67)

The teleportation is achieved, and in order to measure the efficiency of the teleportation protocol, we compute
the fidelity of this teleportation as discussed in [24—-26]. The teleportation fidelity is given by

Frl = Z Pi [ (halx) P (68)
i=1
where P, = Tr(gef (WIM;|W)aer ), M; = [1);) (1] the measurement operator in the quasi-Bell basis [¢;) € {|®™) 4
1P ) aer ¥ ) ae [¥7 ) ge)> and | x);is the teleported state corresponding to the ith projective measurement in the
quasi-Bell basis to the teleported state, that is nothing than Bella’s normalized and corrected outcome given the
measurement result i. Let’s compute first P, i =1, ...4

P = Traef (VP )ae (W) ar ), (69)
Py = Tr(agf (V[P Yae (D [¥)aer ), (70)
= Tt (aef (UIV )ae (VW )aes ), (71)
= TrCaef (PIV ae (T 1V )aef) (72)

P =

2 /
_ i n i(sm (20) + sin20sin 26 ), 73)

1 + sin20 sin 26’

7
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. 2 . . 12
Py=P, = 1 1{sin°(20) —|— sm2.0 sin 26 ' )
4 4 1 + sin 26 sin 26’
The fidelity of transportation the state [1/),, given the channel |¥) ,sin equation (42)is given by
2 0 22 () 1
Frel _ €08 o —0) +. sin (2.6’)sm 0+ 9)‘ 75)
1 + sin 26 sin 26’
If0 = 0’, we have
‘4
Frel _ 1 + sin*(20) 6

1+ sin?20
We determine the minimum assured fidelity (MASFI) which corresponds to the least value of possible fidelity for

agiven information and can be used as measure of quality of teleportation [27, 28]. The concurrence of the state
channelis

cos 26 cos 20’
Cc(|v = 77
(L)) 1 + sin 26 sin 26’ 7
More details on how to compute the concurrence of an entangled state can be found in [23]. The minimum
assured fidelity (MASFI) is defined as
2C([W)er) 2c0s 20 cos 20’
(MASFD),, = ) = - — = (78)
14+ C([¥)y) 1 + sin 20 sin 20’ + cos 20 cos 20
If0 = 0', then
(MASFD)y,, = cos?26. (79)

Let’s recall that sin(20) = exp(—2|af?) and sin(23) = exp(—2|8[*). As we have already noticed, when |

a] — oo and | ] — oo, the quasi-Bell states as defined in equations (29), (30), (31), (32) are maximal and this is
justified here by the fact that when || — 00, | 3] — o0, then sin(26) — 0and sin(26’) — 0, that means that
60— (n/2)and 0’ — (7/2).For 0 = 6’ = (7/2), the fidelity in the equation (75) is 1 and the MASFI in
equation (78)is 1.

5. Concluding remarks

In this work, quasi-Bell states have been established using non-orthogonal states. These quasi-Bell states are
non-orthogonal and non-maximally. The discussion about teleportation via one of these quasi-Bell states has
been motivated by the Horodecki criterion which has shown that the teleportation scheme obtained by replacing
the quantum channel (Bell state) of the usual teleportation scheme with a quasi-Bell state is optimal. Indeed, in a
recent work on a comparative study of teleportation of a qubit using entangled non-orthogonal states, it has
been established that all the quasi-Bell states, which are entangled non-orthogonal states, may be used for
quantum teleportation of a single qubit state [19].

For the quantum channel used in the present work, the performance of the teleportation are given by the
fidelity F* and the minimum assured fidelity (MASFI), which values reach unit when |, | 3] — oo . This
condition cannot be reached since the states are non-orthogonal by construction. Then, we cannot have a
situation of maximally entangled non-orthogonal states as the cases studied in [19]. At § = 0’ = (7w /2), the
minimum assured fidelity (MASFI =1), and the concurrence as well as the fidelity take the value unit, but this is
in contradiction with the fact that sin(26) = exp(—2|a/?) due to the non-orthogonality of the coherent states.
In conclusion, deterministic perfect teleportation is not possible in the case of our study, and the reason is due to
the non-maximallity of the states which cannot be reached without violating the non-orthogonality of the states.
We hope the present study will be useful for the investigations of entangled non-orthogonal coherent states as
channels for teleporting qubits.
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