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Abstract
The high computational demand of the Density Functional Theory (DFT) based method for
screening new materials properties remains a strong limitation to the development of clean and
renewable energy technologies essential to transition to a carbon-neutral environment in the
coming decades. Machine Learning comes into play with its innate capacity to handle huge
amounts of data and high-dimensional statistical analysis. In this paper, supervised Machine
Learning models together with data analysis on existing datasets obtained from a high-throughput
calculation using Density Functional Theory are used to predict the Seebeck coefficient, electrical
conductivity, and power factor of inorganic compounds. The analysis revealed a strong dependence
of the thermoelectric properties on the effective masses, we also proposed a machine learning
model for the prediction of highly performing thermoelectric materials which reached an
efficiency of 95 percent. The analyzed data and developed model can significantly contribute to
innovation by providing a faster and more accurate prediction of thermoelectric properties,
thereby, facilitating the discovery of highly efficient thermoelectric materials.

1. Introduction

As the energy demand continues to rise and concerns about environmental sustainability grow [1], it has
become increasingly alarming to observe that a significant amount of this energy, approximately 66%, is
dissipated in the form of unused heat within industrial processes, modes of transportation and in electronic
components [2–4]. This energy loss is attributed to the inefficiency of existing thermoelectric materials and
has prompted scientists to explore more efficient thermoelectric materials or to optimize existing ones [1,
5–8]. Thermoelectric generators stand as solid-state devices without moving parts, presenting a viable
alternative for harnessing wasted heat [9–11]. The generator consists of two different types of
semiconductors: one with n-type conductivity and the other with p-type conductivity. These two materials
are joined together with provisions for electricity and heat transfer located between a hot source at
temperature Thot and a cold sink at temperature Tcold. The efficiency of a thermoelectric generator is
considerably influenced by both the temperature difference, Thot−Tcold, and the inherent material
properties, often summarized in the figure of merit ZT, given by the following formula;

ZT=
σS2T

κ
, (1)
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where S, σ, T, and κ represent the Seebeck coefficient, the electrical conductivity, the absolute temperature,
and the thermal conductivity, respectively.

An efficient thermoelectric material aims to maximize the electrical conductivity and the Seebeck
coefficient while minimizing the thermal conductivity, so that ZT is high. Traditional methods for
discovering and designing energy materials typically involve laboratory experiments and simulations, which
are time-intensive and yield a limited number of new material samples [12]. Furthermore, these methods
have a low success rate [13]. Over the past few decades, the density functional theory (DFT) has been widely
used to screen new materials due to its ability to handle extensive searches and offer high computational
accuracy. However, DFT calculations also come with drawbacks, such as significant computational costs [14].
In recent years, there has been a significant change in how we explore and design materials [15]. This change
has been driven the emergence of the growing influence of artificial intelligence, particularly machine
learning [16–19](ML) that involves computer algorithms that enhance their performance autonomously
through learning from experience and the utilization of data. Both classification and regression tasks, in
conjunction with various machine learning models, have been employed to predict thermoelectric properties
of materials. Researchers have adopted diverse strategies for data collection, utilizing existing databases such
as Material Project [20], Open QuantumMaterials Database (OQMD) [21], Crystallography Open Database
(COD)[22], Aflow [23], and NIST Materials Data Repository [24]. Alternatively, some have conducted
experimental work to generate their datasets. Other valuable resource in this domain is the matminer Python
library [25], designed for efficient data mining. Moving beyond data collection, the selection of machine
learning models has been crucial in refining the predictions of materials thermoelectric properties.
Researchers explored an array of Machine Learning algorithms, including Random Forest, Ada Boost,
Gradient Boost, light gradient boosting, Support Vector Machine, and K-Nearest Neighbor used to predict
thermoelectric figure of merit, Seebeck coefficient and power factor of several compounds. Among these
models, Random Forest has emerged as the most suitable, achieving an R2 value of 0.95 in predicting the
thermoelectric figure of merit of layered IV−V−VI semiconductors. [4, 26–33] Classification has been
used by Chernyavsky et al [34] to classify thermoelectric materials into distinct binary classes. This approach
facilitates determining where a material possesses a high or low Seebeck coefficient, electrical conductivity, or
thermal conductivity based on the threshold value set by Gaultois et al [35]. Tao Fan et al [36]. have also
perform a classification in order to identify promising thermoelectric materials from others and The
prediction on test sets show that all the trained models can achieve classification accuracy higher than 85%.
Inspired by existing machine learning models, some researches have developed more promising methods for
predicting material properties. For instance, CraTENet, CraTENet+gap, Random Forest+ gap [33]
developed by Luis Antunes et al to predict Seebeck coefficient, electrical conductivity of n and p doped
material. The CraTENet+gap, Random Forest+ gap demonstrated higher accuracy compared to the standard
CraTENet and simple Random Forest in predicting Seebeck coefficient, Thermoelectric power factor and
electrical conductivity of p and n doping inorganic materials. Similarly, Liu et al [37] developed the DopNet
model for analogous purpose, comparing its performance with Gradient Boosting Tree Regression, Gaussian
Process Regression, and Support Vector Regression. The DopNet model surpassed all other machine learning
models, achieving R2 values of 0.86 and 0.64 for Seebeck coefficient and electrical conductivity of inorganic
compounds respectively. The potent capabilities of ML in speeding up material development are evident, as
they efficiently manage vast datasets and conduct complex analyses. These advancements collectively forge a
new path towards identifying energy-efficient materials and hastening progress in this vital field [34, 37, 38].

In this article, unsupervised machine learning algorithm such as Density-Based Spatial Clustering
Application with Noise(DBSCAN) was used in order to clustering the dataset. And furthermore, supervised
Machine Learning models such as linear regression, exponential regression, random forest are used to predict
transport properties by natural clustering and to propose key physical and governing laws specific to each
cluster that will contribute to faster and more accurate predictions of thermoelectric properties, thereby
facilitating the discovery of efficient materials. By harnessing the power of machine learning and data
analysis, we can expedite the search for promising materials and revolutionize the design of more efficient
and durable thermoelectric devices. Our work is structured as follows: First, we collect our dataset. Next, we
perform the cluster analysis to group thermoelectric materials based on their properties. Within these
clusters, we study the relationship between thermoelectric properties. Additionally, we conduct an
exponential regression on the entire dataset to determine the maximum Seebeck coefficient given the
electrical conductivity, and vice versa. Subsequently, we perform a linear regression specifically on cluster D2
to predict the Seebeck coefficient, power factor, and electrical conductivity of n-doped materials based on the
properties of p-doped materials, and vice versa. Finally, we apply the random forest model to both the whole
dataset and dataset D1 to predict the Seebeck coefficient and power factor.
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2. Methods: data analysis andmachine learning

In this work, we used ML techniques to achieve our goal, which consists essentially of data collection, data
cleaning, exploratory data analysis, model building, and deployment.

2.1. Data collection
This study uses the boltztrap_mp dataset from matminer [25] which was thoughtfully compiled and made
publicly available by Ricci et al in 2017 [39]. This dataset presents a comprehensive collection of electronic
and thermoelectric properties for 8924 inorganic compounds extracted from the Materials Project database
[20]. By employing the BoltzTraP software package in conjunction with GGA-PBE or GGA+U density
functional theory calculations [40, 41] under a constant relaxation time(CRTA), the dataset offers crucial
insights into the effective mass ratio, which is the ratio between the n-type and the conduction band effective
mass for n type doping material, and between the p-type and the valence band effective mass for p-type
doping material, thermoelectric power factors, and Seebeck coefficients for both n-type and p-type
materials. The reported properties are specifically documented at a temperature of 300 Kelvin, and a carrier
concentration of 1018 cm-3. The full description of the dataset is given in table 1 of the supporting
information(SI).

Approximations such as the GGA and CRTA, may not accurately predict electronic transport properties
when compared to real-world experiments. GGA tends to underestimate band gaps and overestimate
bandwidths, leading to an overestimation of electronic conductivity [42, 43]. Similarly, CRTA, especially
could overlooks important differences in scattering mechanisms between different materials [44, 45].
Consequently, any machine learning model trained on this dataset may inherit these inaccuracies, potentially
impacting the reliability of its predictions when compared to experimental results. To overcome this, we only
used materials compositions and effective mass ratio in our model which give the opportunity to have viable
prediction with more accurate dataset.

2.2. Machine learning model
The built machine learning models classify our datasets into clusters and predict the Seebeck coefficient,
electrical conductivity and thermoelectric power factor of inorganic materials using the dataset described in
section 1. The machine learning model consists of clustering analysis, linear regression, exponential
regression, random forest classification, and regression. For cluster analysis, we use the Density-Based Spatial
Clustering of Applications with Noise (DBSCAN) method. DBSCAN identifies clusters based on the density
of data points, using a defined radius eps and a minimum number of pointsminsamples. It classifies points as
core points, border points, or noise points based on their local density. This method is particularly effective
at detecting clusters of arbitrary shapes and handling outliers (noise). Unlike other algorithms, DBSCAN
does not require specifying the number of clusters beforehand.

Assuming that the properties of p-doped materials are known, Linear regression was use on cluster D2 to
predict those of n-doped materials. Similarly, assuming we have the value of the Seebeck coefficient,
exponential regression method was used to find the maximum value of electrical conductivity. Please refer to
the supporting information(S.I) for more explanation about linear regression and exponential regression
method.

We use random forest model on cluster D1 and the whole dataset in order to predict the target variables
(Seebeck coefficient and thermoelectric power factor n and p) also denoted as Y given the descriptor
variables in the dataset(effective mass ration and formula) also denoted as X. Pymatgen and matminer
programmes was used to break down a given formula into its component part in order to create new
features. This was created based on material composition. We applied two kind of featurizations,

The first was made by using some randomly selected properties that are the row, group, atomic radius,
boiling point, melting point, and electronegativity for each element in the composition. Then, we compute
the mean and standard deviation based on the set of elemental properties for each composition. These
statistical quantities of the elemental properties then become the new features of that material. According to
Antunes et al [33], adding a band gap as input to the model outperforms those without the band gap. So,
based on that information, We retrieve the band gap of all those materials in Material Project database, along
with the effective mass ratio of p and n doping material and added them to the statistical quantities. and this
was used as input feature to the first model.

For the second one, the materials agnostic platform for informatics and exploration (MAGPIE) was
utilized to compute elemental property attributes. which builds an object that can autonomously engineer
132 new features based on the technique developed by Ward et al [46]. It accomplishes this by first figuring
out each component’s attribute. The mean, minimum, maximum, and other statistical variables are then
calculated based on the set of elemental attributes for each mixture. The new features for that material are
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Figure 1. Process of featurization based composition.

then derived from these statistical quantities of the elemental properties. The featurize_dataframe method
may then be used by the ElementProperty object to produce all the columns with features. We proceed by
removing correlated features, the missing values along with all the columns having the sum of null value
greater than 50. If two features have a correlation greater than 0.80, just one of them is keep for further
analysis. The remaining features at the end of all these process were 35, and was used as input for the second
model. The featurization process is illustrated in figure 1.

So, the random forest model was trained for both classification and regression using those features
mentioned above. In order to find the suitable hyperparameter for the model, the grid search method was
used and the number of estimator was set to 700, the maximum depth to 10, the minimum sample leaf to 3
and the minimum sample split to 2.

Formally, for the regression task, the goal is to learn a function f : X →Y where X represents the
multi-dimensional input space and Y represents the corresponding multi-dimensional target space. The
training setD consists of k labeled examples (xi,yi), where xi describes the features of an exemplar in X , and
yi represents the associated target in Y . The training procedure involves finding the function f by adjusting
the parametersW and b during training. Here,W denotes the weights and b represents the biases of the
model. The function f is defined as:

Ŷ = f(X ;W;b) (2)

where Ŷ is the predicted output obtained by applying the model to the input data X .
The optimization process aims to minimize the loss L, which quantifies the disagreement between the

true values Y and the predicted values Ŷ . The loss function L is defined as the mean squared error, computed
using the following equation:

L=
1

N

N∑
j=1

(
Yj−Ŷj

)2
(3)

where N is the number of samples in the training set, Yj is the true target for the jth sample, and Ŷj is the
corresponding predicted output.

The optimization process involves adjusting the parametersW and b to minimize the loss function. This
is typically achieved through iterative optimization algorithms such as gradient descent. The update rule for
the parameters during each iteration can be expressed as:

W←W−α
∂L

∂W
(4)

b← b−α
∂L

∂b
(5)

where α is the learning rate, and ∂L
∂W and ∂L

∂b denote the gradients of the loss with respect to the weights and
biases, respectively. The gradients are computed using the chain rule of calculus and the backpropagation
algorithm. The training process continues iteratively until the loss converges to a minimum or reaches a
satisfactory level. To achieve this, we have used random forest model.

For the classification model, we applied random forest to features obtained after the second featurization
in order to classify materials as either D1 or D2. Given the pronounced class imbalance in our dataset, with
the majority class comprising 8605 data points and the minority class only 132 data points, it was crucial to
adopt a technique to mitigate this imbalance. Although random forests inherently have some capability to
handle imbalanced data, we chose to employ the Synthetic Minority Over-sampling Technique (SMOTE) to
further address this issue. SMOTE is specifically designed to handle imbalanced datasets by generating
synthetic samples for the minority class. This technique helps prevent overfitting and enriches the model
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Figure 2. Flowchart of the method choose based cluster.

with more information. To reliably evaluate the model’s performance, we used the Area Under the Receiver
Operating Characteristic (AUC-ROC) curve. The ROC curve is a probability curve, and the AUC represents
the degree of separability between the classes. It indicates how well the model can distinguish between
classes. For detailed classification results, please refer to the supplementary information (SI). Figure 2 show
the method we have used in each cluster.

3. Results and discussions

This section is dedicated to data analysis and the development of machine learning models for the prediction
of thermoelectric properties such as the Seebeck coefficient, electrical conductivity, and thermoelectric
power factor.

3.1. Clusters and data analysis
Figure 3 presents the scatter plot of the entire dataset for the Seebeck coefficient of n-type and p-type doping
materials. Analysis of the figure 3 reveals a natural clustering pattern. And so we performed the DBSCAN
method with ε= 0.5 and min_samples= 10 in order to group our datasets into classes, and we found they
can be categorized into two main groups: the largest cluster labeled as D1, shown in red circles, and the linear
square-shaped cluster colored blue and labeled as D2. We also have some points that do not belong to any
cluster, shown in green triangles.

Each cluster falls within the following ranges:

D1: Sn ∈ [−250,−1000] and Sp ∈ [250,1000]

D2: Sn ∈ [−200,500] and Sp ∈ [300,800] .

It is worth to notice from the figure 3 that some of the p-doped materials end up with a negative Seebeck
coefficient, and some n-doped materials end up with a positive Seebeck coefficient. Even though this is not
the conventional behavior of thermoelectric materials, this was explained by Bin Xu et coworkers [47]. They
have shown that there are materials where the sign of their Seebeck coefficient does not depend on the type
of charge carrier but on the energy dependence of the electron lifetime. Examples of such materials are
Lithium, Copper, Silver, Gold, that have positive Seebeck coefficients when n-doped. Another explanatory
route, is the class of materials capable of switching from a positive Seebeck coefficient to a negative Seebeck
coefficient and vice versa depending on the imposed physical conditions. Examples of such is CoSbS which
p-type turns out that for certain proportions of sulfur, the material ends up with a negative Seebeck
coefficient [48]. Using all the data from the Ricci et al database [39], curves of temperature versus Seebeck
coefficient for different doping levels have been plotted. These curves can be found in the MPContribs
Explorer tab of the Materials Project for materials exhibiting such behavior. We have illustrated this through
figure 4 for few of these materials in our database. Figures 4(a) and (b) represent the temperature and doping
level dependence of the n-type Seebeck coefficient on the temperature and doping. The same behavior is
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Figure 3. DBSCAN method: (a) clusters with Noise, (b) clusters without Noise.

Figure 4. Temperature and doping level dependence:(a), (b) of the n-type Seebeck coefficient, (c), (d) of the p-type Seebeck
coefficient.

observe in figures 4(c) and (d) which represents the temperature and doping level dependence of the p-type
Seebeck coefficient. Therefore the unconventional Seebeck coefficients of these materials exhibiting this
peculiar behavior is intrinsic to these materials.

3.2. Thermoelectric properties
Our analysis focus on the two primary large clusters D1 and D2.

Using the Seebeck coefficient and the power factor, we computed the electrical conductivity of both n
and p doping materials with equation (11), where PF represents the power factor, S is the Seebeck coefficient,
and σ is the electrical conductivity.

PF= σ · S2. (6)

Figure 5 shows the scatter plot of various thermoelectric properties of each cluster for better understanding
of their relationships. A deep analysis of figure 5(a) which is the scatter plot of the power factor and Seebeck
coefficient of n type doping materials, reveals that materials in cluster D1 exhibit a negative Sn, while
materials in cluster D2 may exhibit either negative or positive values for both Sn and Sp. Figures 5(b) and (c)
are the relationship between the Seebeck coefficient and the electrical conductivity of n doping and p doping
material respectively. As expected, the absolute value of the Seebeck coefficient and the electrical conductivity
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Figure 5. Relationship between thermoelectric properties: (a) power factor and Seebeck coefficient of n doped material, (b)
seebeck coefficient and electrical conductivity of n doped material, (c) seebeck coefficient and electrical conductivity of n doped
material, (d) power factor of p and n doped material, (e) seebeck coefficient of n doped and Seebeck coefficient of p doped
material, (f) electrical conductivity of n and p doped material.

are inversely proportional. We also observe that materials in cluster D1 stand out with exceptionally low
electrical conductivity values. Specifically for n-type doping, conductivity values are below 24(Ω · cm)−1 and
for p-type doping, they could reach up to 87(Ω · cm)−1. However these materials in D1 exhibit a large
absolute values of Seebeck coefficients. This trend might suggests that for materials in cluster D1, the
electronic contribution to the power factor and thermal conductivity is very low with respect to their thermal
response. Conversely, materials in cluster D2 display a much broader range of electrical conductivity value
(up to 500(Ω · cm)−1) but with a moderate range for the Seebeck coefficient. This analysis suggests that for
materials in cluster D2, thermal contribution to the power factor and thermal conductivity is not high with
respect to their electronic response. Figures 5(d)–(f) represent respectively the relationship between the
power factor, the Seebeck coefficient and the electrical conductivity for n and p doped materials. We observe
that materials in cluster D2, exhibit a linear trend in all cases (strong positive correlation: about 0.89),
indicating that the power factor, Seebeck coefficient and electrical conductivity of materials in cluster D2 are
less or not at all influenced by the material doping type. This behavior implies that factors increasing
thermoelectric properties of n doping materials are likely to also increase the thermoelectric properties of p
doping materials, allowing for simultaneous optimization. By targeting modifications that affect both
coefficients, such as specific dopants or level of doping, it is possible to streamline the development process,
reducing the need for separate experiments for n and p doping material. This not only accelerates material
optimization but also cuts costs and development time. On the other hand, materials in cluster D1 exhibit a
more scattered distribution (weak correlation) especially for figures 5(d) and (e). Furthermore, we observed
that the range of the Seebeck coefficient of p and n doping materials in cluster D1 are symmetrically opposed,
suggesting that they are highly affected by the material doping type. The conclusion at this stage of the
analysis comes as follow: The natural cluster observed from the Seebeck coefficients scatter plot 3 is strongly
and intrinsically related to the physical and thermoelectric properties of the analyzed materials. On one side
the low electrical conducting and doping and thermal dependent materials cluster D1. On the other hand the
high electrical conductivity, doping independent and electronic related materials in cluster D2.

3.3. Clusters and effective mass ratio
Figures 6(a) and (b) represent respectively the scatter plot of the Seebeck coefficient vs. the effective mass
ratio and the electrical conductivity vs. the effective mass ratio of p doping materials . We observe that there
is no linear dependence between thermoelectric properties and the effective mass ratio. Notably, materials
within cluster D2 are characterized by a low effective mass ratio, with approximately 90 percent possessing an
effective mass ratio less than 200. In contrast, materials in cluster D1 exhibit a wide range of effective mass
ratio values. The detailed analysis of materials properties within clusters D1 and D2 has provided valuable
insights into their distinct behaviors.
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Figure 6. Scatter plot of (a) seebeck coefficient and effective mass ratio of p doping material, (b) electrical conductivity and
effective mass ratio of p doping material .

Figure 7. Scatter plot of (a) seebeck coefficient and electrical conductivity of p and n-type doping materials , (b) seebeck
coefficient and electrical conductivity of p-type doping materials.

3.4. Correlations between the electrical conductivity and Seebeck coefficient
Figures 7(a) and (b) represent respectively the scatter plot of the Seebeck coefficient vs. to the electrical
conductivity of n and p doping type material for materials in all our database. As shown previously, the
Seebeck coefficient and the electrical conductivity are inversely proportional. These figures also shows that
for a given value of the Seebeck coefficient, there is a maximum limit value for the electrical
conductivity(σmax) and inversely. This maximum limit obey to an exponential law that is determined with an
exponential regression fitting as shown in equation (7) for n type doping and in equation (8) for p type
doping materials represented in figures (a) and (b) in orange dash line

σmax
n = 8937.831 · e−0.0258·Sn + 17.735 (7)

σmax
p = 2650.540 · e−0.0145·Sp + 7.316. (8)

Using these thermoelectric power laws in equations (7) and (8), it is possible to predict the maximum
value of the electrical conductivity (σmax) for a given Seebeck coefficient and vice versa. This established laws
will mainly help for a quick scanning of the thermoelectric relevance of a given material with a known
electrical conductivity or Seebeck coefficient.

3.5. Predictive models for thermoelectric properties
Given the relevance of clusters in the materials properties prediction, a proposed random forest classification
model allows to know exactly to which cluster a material belongs.

Given the consistent linear trends observed in the Seebeck coefficient, power factor, and electrical
conductivity across all D2 materials, the choice of using linear regression fitting was a logical decision for
capturing and modeling the underlying relationships among these thermoelectric properties. We adopted a
random forest as a prediction model of D1’s properties due to its ability to model more complex relationship
and its robustness in handling data variability.
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Figure 8. Relationship between: (a) true and predicted value of Seebeck coefficient n type doping using dataset D2, (b) true and
predicted value of Power factor n type doping using dataset D2, (c) true and predicted value of Electrical conductivity n type
doping using dataset D2.

3.6. Linear regression on cluster D2
Figure 8 illustrate the relationship between the true and the predicted value of the Seebeck coefficient, power
factor, electrical conductivity of n type doping material given p type doping material properties. We applied a
linear regression fitting on material in D2, and we found a relationship as in equation (9) for the Seebeck
coefficient, equation (10) for the power factor, and finally equation (11) for the electrical conductivity using
dataset D2 as illustrated in figures 8(a)–(c) along with the respective r-square value and the mean absolute
error

Sn = 0.96Sp− 17.63 (9)

Pn = 0.99Pp + 0.01 (10)

σn = 1.01σp + 1.91. (11)

Using these equations, one can very accurately predict with a very high R-square the value of the
electrical conductivity, Seebeck coefficient and thermoelectric power factor of n doping material given the
value of p doping material properties and vice versa. This thorough analysis underscores the equation’s
accuracy in precisely estimating the Seebeck coefficient, power factor, and electrical conductivity of n-doped
materials, particularly when we possess information about the power factor of p-doped materials and vice
versa. The small mean absolute error and the high R-squared value validate the model’s reliability,
establishing it as a valuable tool for predicting these thermometric properties.

3.7. Random forest on cluster D1
Figure 9 is the result of the prediction of the Seebeck coefficient. As describe in the method section, we used
two (02) groups of features, the first group include the mean and the standard deviation of group, atomic
radius, boiling point, melting point and electronegativity along with band gap and effectives mass. The
second group consist of magpie featurization with effective mass and the result of the prediction using those
features are represented in figures 9(a) and (b) for the whole dataset. The model without magpie
featurization perform with an R-square of 0.76 and a MAE of 45.70. However with magpie featurization as
one can see in 9(b), the R-square is improved to 0.79 and the MAE as well. Figures 9(c) and (d) represented
the true and predicted value of the Seebeck coefficient n doped material for the dataset D1 with and without
magpie featurization. Those figures reveal that magpie features give more accurate R-square 0.83 than the
first group of feature as in the case of the whole dataset. We also found that model prediction through cluster
is more accurate than the model prediction of the whole dataset which shows the relevance of cluster based
prediction.

We also build a model for the prediction of the Seebeck coefficient p and the power factor p doping type
and the result is illustrated in figure 10 using only magpie featurization and we found a low R-square value
shown that the model performance is not good on p doping type material properties and this can be
explained by the result of the feature importance in the supporting information. From that result, the
importance of the features on p doping materials are very small compare to the importance of features on n
doping materials.

D1 model is not highly accurate due to the small sample points on that domains and the model of the
whole dataset is not highly accurate due to the fact that data is grouped by categories, each with its own
unique characteristics. From these different predictions, it emerges that cluster predictions are better than
predictions of the whole data set, which makes clustering an interesting option.
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Figure 9. Result of the prediction of Seebeck Coefficient of n doping material: (a) and (c) using random selected feature, (b) and
(d) using magpie featurization for the entire Dataset and D1.

Figure 10. Result of the prediction of (a): seebeck Coefficient of p dopped materials, (b) power Factor of p dopped material using
Dataset1.

3.8. Good thermoelectric material
According to the criteria defined by Gaultois et al (|S|> 100µVK−1, σ > 102 (S cm−1), κ < 10W ·m−1

·K−1, Eg > 0eV, all at room temperature) [35], for a material to be suitable for thermoelectric applications,
we extracted potentially good thermoelectric materials from our dataset given by the following chemical
formulas: Li2Ag3F6, NaFePCO7, Cu2O3, LiCoSiO4, V4O7F5,Mn6OF11. We found that the extracted potential
good thermoelectric materials belong to dataset D2 and are all suitable for n−type or p−type doping. All
these materials belong to the class of materials that are able to switch from positive to negative Seebeck.
Example of such materials are Cu2O3,Mn6OF11, LiCoSiO4 and V4O7F5 with negative Seebeck coefficient p
and negative Seebeck coefficient n but NaFePCO7 and Li2Ag3F6 have positive Seebeck coefficient n and
positive Seebeck coefficient p. It has been proof by Kousar et al [48] that such material are promising for
thermoelectric device which confirm our analysis. The materials extracted from our analysis are all crystallize
in the monoclinic phase, consistent with the investigations conducted by Ogunbunmi et al [49] and
Mahmoud et al [50], where good thermoelectric materials were found to crystallize in the monoclinic phase
as well. Due to the very low electrical conductivity of materials in cluster D1, we could not find any material
that meets those criteria.

10
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According to another criterion define by Fan and Oganov [36] (PF⩾ 5µW · cm−1 ·K−2) for a material
to be good thermoelectric material, we found some good thermoelectric material in our datasets which are:
CsSnI3,VO2F,SnSe,Li4Co(OF)2,KPrPCO7. Notably, SnSe has already been studied and confirmed to be a
good thermoelectric material. Additionally, CsSnI3 has been investigated and demonstrated to be a
promising thermoelectric material [51], due to it ultralow value of thermal conductivity (0.69Wm−1 K−1)
with a ZT value of 0.08 at 300K. By utilizing the experimentally obtained thermal conductivity value of
CsSnI3, we computed a ZT of 0.31 at 300K using the power factor from our dataset, which is significantly
higher compared to the existing value. We believe that employing a thermal conductivity obtained through
material doping will further increase this ZT value.

4. Conclusion

Through this study we brought in data analytics and predictive models able of accelerating the design and
discovery of good thermoelectric materials. The use of cluster based method has proven to be highly effective
in analyzing our data, showcasing its immense promise in the quest for quality thermoelectric materials.
Notably, we have identified two distinct clusters D1 and D2 each revealing unique thermoelectric behaviors.
Cluster D1 characterized by a high thermal contribution but an exceptionally low electrical contribution,
even with doping. This distinctive characteristic makes it difficult in identifying high-performing
thermoelectric materials within this cluster. Conversely, cluster D2 materials exhibits an electrically high
contribution along with an average thermal contribution, significantly increasing the likelihood of
discovering promising thermoelectric materials within such a cluster. Our proposed models are robust and
highly accurate for cluster-based predictions of thermoelectric materials features. In essence, our research
contributes as valuable insights and tools that propel the search for optimal thermoelectric materials, paving
the way for advancements in energy conversion technologies.
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